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A general Halanay inequality and applications
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Abstract: A general Halanay inequality was formulated by a simple method. It could be applied to the

study of dynamical behavior of delay different equations. A class of control system was considered with

multi-delay and a sufficient condition to guarantee the global exponential stability was established. At

last applications demonstrated part of the effectivity of the development method.
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Differential inequalities have played a significant
role in the analysis of continuous and discrete time dy—
namical systems. It is well known that inequalities
such as the Halanay inequality ' is important meth—
ods for investigating the dynamical behavior of differen—
tial equations. In particular the Halanay inequality
which was first proposed by Halanay ' has been widely
applied to the stability analysis of various delay differ—
ential equations and it has also proved to be a power—
ful tool in the investigation of distributed delay differen—
tial equations >’

Halanay inequality ' If v(7) =0 te( -
+ ) and

v(t) <av(t) +b v(9)
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then there exist constant @ >0 and 8 >0 such that

o( 1) <Be U iz,
1 Main results

The Halanay inequality is very convenient to im—
plement in many real applications. It is worth pointing
out that the inequality has been generalized various
forms. But it is rare to consider the Halanay inequality
with the variable coefficient and multiple time delay.
In the following we consider the Halanay inequality
with the variable coefficient and multiple time delay.
Ifo(t) =0 te( —o +o) and
v(1) <vy(t) +al)v(e) +6(0) o(9) +

T

Theorem 1

(1) me(s)v(z—s)ds (2)
v(1) = (1)

where ¢( t) is bounded and continuous for t<t, con-

tinuous functions y(#) =0 a(t) <O b(#) =0 ()

te (- i
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the delay kernel K( <) =0

=0 y' = sup_y(1)

toSt< +®
andf
0

If there exists g >0 such that
a(t) + b(1) + (1) |

Then there exists a positive number

eds < + o for some positive number y.

K(s)ds <-

0

o <0 =4

such that

(1) gL 4 Ge ™ (i-w0)
o

t=t,

Where

T mf{ ‘uo+ ae) + (1) e +

=1

e 1) IOHQK( s) etds = 0]

G= sup |g(s)| and

—® <5<

() .=
0

sup o(s) 7(t) =0.

t—7(1t) Ss<t

Proof We define the function F( ¢ ,u) by
F(tp) =p+a(t) +b(1)e™" +

+

e( 1) fo K(s) ¢ ds

for any given fixed 1=, we can obtain that

F(t0) =a(s) +b(1) +c(t)f
—o <0 limF(tu) =+

pu—+®

+o

K(s)ds <

0

and
W) _y yr(h)b(a) e+
o
c(t) f xsK( s)eds > 0.
0

Therefore for any given t=1¢, there is a unique posi—

tive u” such that
wtale) +b(8)e™ + (1) j K(s) e®ds = 0.
0
Define
(1/( £) —%)e" (el =y
u(1) = . (3)
o) -Y—  —w o <i<yy
o
for t=t, we have
du(s) _ i

= do() i) ( L) £ ()
d dr © MGy S

[’y(t) +a(t)v(e) +b6() ol ,+
c( 1) f;wK(s) v(t —s) ds]e“*“_")) +
( L*),U« e*(Ho) — ’y(t) eu*(Ho) _

U0 g (a() +p) L 0
g

(a(t) +p )u(e) +b() uld) , +

e( 1) jo K(s)u(t —s) e

Tds +
K(s) Y=e* 70 ds + b( 1) L u (o)
g

e( 1) jo

')’( t) eu* (t-tg) + a( L‘) Leﬂ* (1-10) + b( L‘) L u (1-tg) "
ag ag

()%““OL

+ o

K(s)ds + (a(t) +u )u(t) +

b(l)eﬂ*r([) () L +c(d ul(y xf;wK(s)e“*°ds.(4)

Since v( t) is continuous and define fort e ( —» i,

we let

Y
o

= G.

su

t -
to-7(19) St<to o(1)

Let § >1 be arbitrary we have u(t) <8G forte( -

© 1, .
We claim
u(t) <8G  t>i,.
Suppose u( ) <8G does not hold for ¢ >¢,. Let
t, =inf{z: u(t) =6G 1=1,}
then
u(t) <8G - <I<{,
{u( t,) =6G
Tu( ¢
and (”gtl) >0, (5)
We have from (4) and (5)
du(t,) ,
0< dtl < y(1,) e (170 4
(a(t,) +b(1) +c(n) [ K(9) ds) Lot 4
0 o

('““* +a(t) +b(n)e ™ 4

t)f *‘ds)

a() +b(n) +e(n) |
o
This contradicts. So u(#) <8G for ¢ >1,.

+0

0 )<0

Let 5—1 u(1t) <G;

so we have v(1) <

Ge -u” (1-1) )
So the proof of the Theorem 1 is completed.
Remark 1 If y(¢) =0 ¢(t) =0

quality (2) can be rewritten

v (1) <a(t)v(r) +6(0) (9 ,
(1) =(1)
If y(#) =0 b6(1) =0

rewritten

then the ine-

(6)

te( —»

then the inequality (2) can be
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oo (1) T
[vu) <a(t)o(t) +c(2) jo Kot =9 ds o (x(t) x(t-7(1)) jo K(s)x(t-s)ds)" =
o) =) rel(-=1 (x(1) *(t-7(1)) f“)K(s)x(t-s)ds) X
If ¢(t) =0 then the inequality (2) can be rewritten 0
() <y (1) +a()o()) +b() o) QPA+A'P-pP PB PCD
O T
{v(t) Sh(1)  te( - 1 (8) q B -Q 0 X
o cp o -wU

those obtained results ex—
(7) or (8).

Remark 2 The conclusions of these above ine—

In reference 2 -4 6 -8
ploited the inequality ( 6)

qualities are a specialty of our results. In this paper
the proof method of Theorem 1 is different with the ref-—
erence 6 —8 . Our methods is easy to understand and

not complicated proof process.
2  Application

Consider the multiple delay differential system
x(t) = Ax(t) +Bx(t -7(1)) +

a(t)
C K(s)x(t-s)ds t=0 (9)
0
x(1) = ¢(1) - <t<0
where x: R—R" is the state 7(1) =0 0<o(1) <

o the delay kernel K( *) =0 andf K(s) e*ds <
0

+ o A B C are n xn matrices.
Theorem 2 The zero solution of (9) is globally
exponentially stable if there exist p <0 ¢=0 w=0

and n X nmatrices P () W >0 such that

Q<qgP W<wP p+q+wa'*J K*(s)ds <0
0

(PA+A"P-pP PB PC [

O prp Q0 0 E‘so

c'p 0 -wa

and
U
hold.
Proof Let x be a solution of (9) and define v
(t) =x"(t) Px(¢). Then
v(1) = (x7(1)) "Px(t) +x"(t) Px(1)

(Ax(z) + Bx(t —-7(2)) +

o(t)

cfﬁ

xT(t)P(Ax(t) +Bx(t —7(2)) +

K(s)x(t—s)ds) Px(t) +

(x(2) «(t—-7(1))
PA + AP PB PC[
K(s)x(t —s) ds)g B'P 0 0%‘
U c'p o ol

K(s)x(t—s)ds)

o(t)

(x(2) x(t-7(1)) jo K(s)a(t—s)ds)™ +

px' (8) Px(t) +x"(t —7(1)) Qx(t —7(1)) +

(j:(')K(s) (1 =) ds) Wj:mK(s)x(t _5)ds <

px' (1) Px(t) +qgx'(t —7(1)) Px(t - 7(1)) +
o(t)

wo K (s)x"(t—s)Px(t —s)ds < pv(t) +

o(t)
gu(t - 1) +wa*f K*(s)o(t—s)ds
0

hence the conditions of Theorem 1 are satisfied

o(t) <Ge ™ 70 e RY
Where
,u* = in(f{,u,:,u, +p +qe’”m +
t=0
wo f K*(s) eds =0} G = sup [(s) |-
0 —® <ssi

Therefore the zero solution of (9) is globally ex—
ponentially stable.

Reference:

1 HALANAY A. Differential equations: stability oscillations time
lags M . New York: Springer-Verlag 1966.
WANG L'S XU D Y. Global exponential stability of Hopfield re—
action diffusion neural networks with time-varying delays J . Sci
China Ser 2003 46 (6) 466 —474.
LIUXZ TEOKL
high-order Hopfield-type neural networks with time-varying delays
J. 2005 16(6):
1329 - 1339.
DANIEL W C LIANG J L LAM J. Global exponential stability of
impulsive high-erder BAM neural networks with time-varying de—
lays J . Neural Networks 2006 19(10): 1581 —1590.
XUDY YANG Z C. Impulsive delay differential inequality and
J Math Anal Appl 2005 305

XU B J. Exponential stability of impulsive

TIEEE Transactions on Neural Networks

stability of neural networks J .
(1): 107 -120.

TIAN H. The exponential asymptotic stability of singularly per—
turbed delay differential equations with a bounded lag J . J Math
Anal Appl 2002 270(1): 143 -149.

HUANG C HE'Y WANG H. Mean square exponential stability

of stochastic recurrent neural networks with time-varying delays

J . Comput Math Appl 2008 56(7): 1773 -1778.
WENL YUY WANG W. Generalized Halanay inequalities for
dissipativity of Volterra functional differential equations J . ]
Math Anal Appl 2008 347(1): 169 -178.
[ 1



